

Photocatalytic Ability of Cotton Pads Modified with TiO₂-Pt/Reduced Graphene Oxide and SiO₂-Pt/Reduced Graphene Oxide Composites

IC-ANMBES 2018

INCDTIM

Marcela-Corina Roşu⁽¹⁾, Maria Coroș⁽¹⁾, Florina Pogăcean⁽¹⁾, Alexandru Turza⁽¹⁾, Doina Prodan⁽²⁾, Stela Pruneanu⁽¹⁾ ⁽¹⁾National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293, Cluj-Napoca, Romania ⁽²⁾Babes-Bolyai University, 1 Mihail Kogalniceanu Street, 400084 Cluj-Napoca, Romania <u>e-mail: marcela.rosu@itim-cj.ro</u>

INTRODUCTION

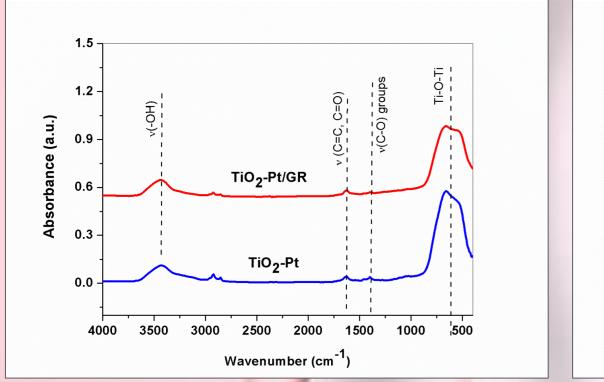
Nowadays, high quality fabrics having self-cleaning, antimicrobial, UV blocking and comfort characteristics can be developed by modifying textile materials with different nanomaterials. MOTIVATION Textile materials with photocatalytic characteristics were obtained by modifying cotton pads surface with TiO₂-Pt/reduced graphene oxide (TiO₂-Pt/GR) and SiO₂-Pt/reduced graphene oxide (SiO₂-Pt/GR) composites.

Preparation of TiO₂-Pt/GR and SiO₂-Pt/GR composites Graphene oxide (GO) was obtained from graphite by a chemical oxidation process (a modified Hummer's method). TiO₂-Pt and SiO₂-Pt (with 2% Pt/Ti, respectively 2% Pt/Si molar ratios) were synthesized by chemical reduction of hexachloroplatinic acid (H₂PtCl₆) solution with ascorbic acid at 80°C. TiO₂-Pt/GR and SiO₂-Pt/GR composites were prepared by thermal treatment of TiO₂-Pt/GO

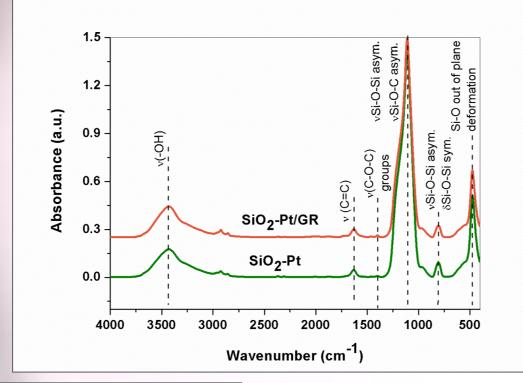
and SiO₂-Pt/GO (with 10:1 initial mass ratio of TiO₂-Pt, respectively SiO₂-Pt to the GO) at

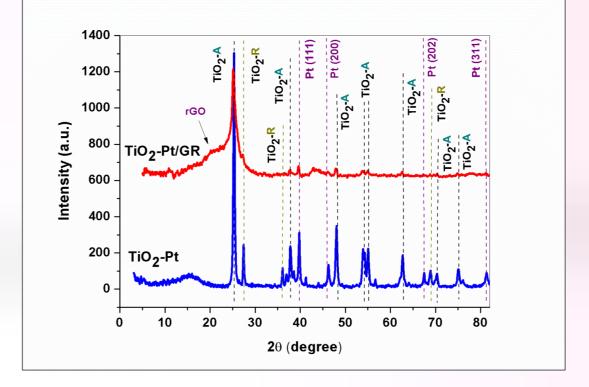
Cotton pads (d = 6 cm) were immersed into the dispersion of obtained composites (1 mg/ml

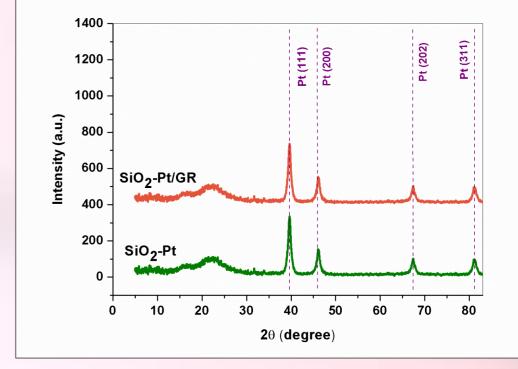
ethanol solution 10%) for 5 minutes and then, the textile materials were dried at room



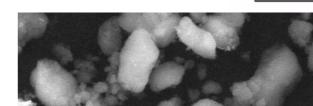
SiO₂-Pt/GR


TiO₂-Pt-coated cotton pad

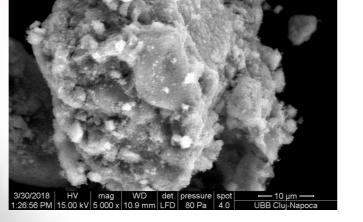

STRUCTURAL AND MORPHOLOGICAL CHARACTERIZATION OF COMPOSITES

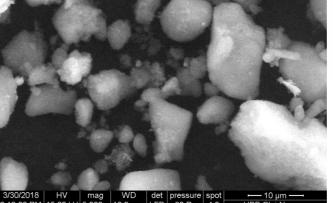


temperature.



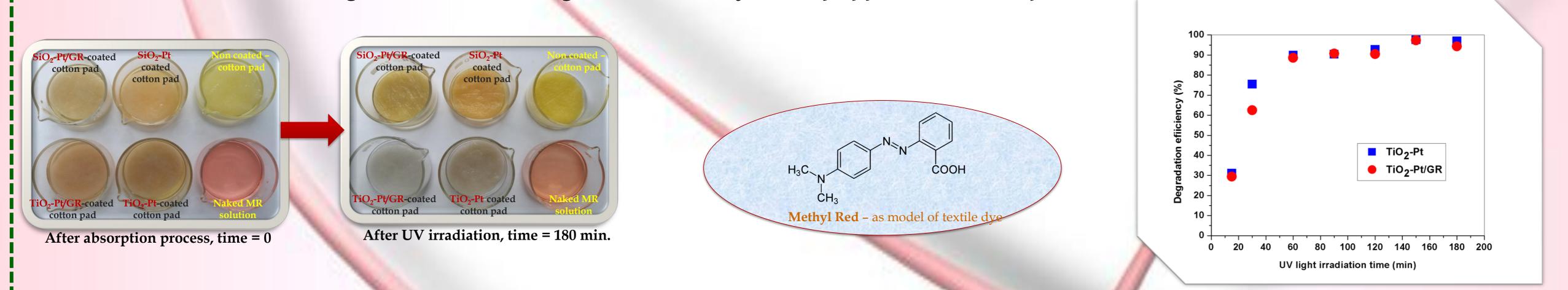
Infrared Spectroscopy (FTIR) analysis


X-ray powder Diffraction (XRD) investigation



300°C, for 15 minutes, under argon atmosphere.

Preparation of composites-coated cotton pads



SEM image of SiO₂-Pt/GR composite

PHOTOCATALYTIC ACTIVITY OF COMPOSITES-COATED COTTON PADS ON METHYL RED DEGRADATION

The photocatalytic activity of treated textiles was evaluated by degradation of 2x10⁻⁵M methyl red (MR) aqueous solution under ultraviolet (UV) light irradiation using a homemade system equipped with a lamp OSRAM VITALUX 300W.

The methyl red degradation experiments in the absence of composites can be considered as negligible. SiO₂-based composites not display noticeable photocatalytic activity, thus its behavior in methyl red photodegradation has not been presented. The photodegradation efficiency of the TiO₂-Pt/GR-coated cotton pads was clearly superior to that of similar textiles containing SiO₂-based materials. It is expected that TiO₂/graphene-based nanocomposites might be used to introduce high performance

characteristics of various textile products. <u>Acknowledgments:</u> This work was supported by a grant of the Romanian Ministry of Research and Innovation, CCCDI – UEFISCDI, project number PN-III-P1-1.2-PCCDI-2017-0743/44PCCDI/2018, within PNCDI III. The SEM investigation was supported using the infrastructure obtained in the project Research Center and Advanced Technologies for Alternative Energies - CETATEA - 623/11.03.2014.